11

Toward more efficient computing, with magnetic waves

5 years ago
Anonymous $6AJGTL-6_8

https://www.sciencedaily.com/releases/2019/11/191128172218.htm

Classical computers rely on massive amounts of electricity for computing and data storage, and generate a lot of wasted heat. In search of more efficient alternatives, researchers have started designing magnetic-based "spintronic" devices, which use relatively little electricity and generate practically no heat.

Spintronic devices leverage the "spin wave" -- a quantum property of electrons -- in magnetic materials with a lattice structure. This approach involves modulating the spin wave properties to produce some measurable output that can be correlated to computation. Until now, modulating spin waves has required injected electrical currents using bulky components that can cause signal noise and effectively negate any inherent performance gains.

Toward more efficient computing, with magnetic waves

Dec 1, 2019, 9:18pm UTC
https://www.sciencedaily.com/releases/2019/11/191128172218.htm > Classical computers rely on massive amounts of electricity for computing and data storage, and generate a lot of wasted heat. In search of more efficient alternatives, researchers have started designing magnetic-based "spintronic" devices, which use relatively little electricity and generate practically no heat. > Spintronic devices leverage the "spin wave" -- a quantum property of electrons -- in magnetic materials with a lattice structure. This approach involves modulating the spin wave properties to produce some measurable output that can be correlated to computation. Until now, modulating spin waves has required injected electrical currents using bulky components that can cause signal noise and effectively negate any inherent performance gains.