-1
Failures in power grids: Dynamically induced cascades

Failures in power grids: Dynamically induced cascades

6 years ago
Anonymous $CLwNLde341

https://phys.org/news/2018-05-failures-power-grids-dynamically-cascades.html

The international team of scientists from the Center for Advancing Electronics Dresden (cfaed) at TU Dresden and the Max Planck Institute for Dynamics and Self-Organization in Göttingen (Prof. Marc Timme, Dr. Benjamin Schäfer), the Forschungszentrum Jülich (Jun.-Prof. Dr. Dirk Witthaut) and the Queen Mary University of London (Prof. Vito Latora) was able to find out that some transition processes between different states of the power grid take place on a time scale of a few seconds. "These can play a decisive role in the development of collective reactions, which can eventually lead to a 'blackout.' In our study we propose a prediction method to identify potentially endangered lines and network components already at the planning stage and, if appropriate, also during the operation of power networks. Such dynamic effects could be integrated into network operators' risk assessments and system planning. Overall, our results underline the importance of dynamically induced failures for the adjustment processes of the national power grids of various European countries," says Prof. Marc Timme from the Strategic Chair of Network Dynamics at TU Dresden.

Major power outages, which often affect millions of people, are caused by complex and often non-local interactions between many components. In Europe, for example, the planned shutdown of a line in 2006 led to the failure of large parts of the European grid and affected up to 120 million people. Such unfavorable chain reactions can already build up by switching off a single line in the network. In an advanced stage, a fast dynamic develops, that is based, in particular, on the automatic switch-off devices, which are actually supposed to ensure the safety of the network. This rapid dynamic was the focus of the research of the team of scientists. Professor Dirk Witthaut from Forschungszentrum Jülich explains the reasons: "In recent years, the trend in the electricity sector has continued towards strong networking, the countries are very closely integrated into the European grid. Since such failures anywhere in this network could affect us at any time, we must understand the causes. That's why we were concerned with these questions: Can we understand how these fast processes work? Can we predict which lines could cause a large-scale power outage?"

Last Seen
3 hours ago
Reputation
0
Spam
0.000