New Fermi arcs could provide a new path for electronics

New Fermi arcs could provide a new path for electronics

2 years ago
Anonymous $R5WK5a8uaN

https://www.sciencedaily.com/releases/2022/03/220324184641.htm

Fermi surfaces in metals are a boundary between energy states that are occupied and unoccupied by electrons. Fermi surfaces are normally closed contours forming shapes such as spheres, ovoids, etc. Electrons at the Fermi surface control many properties of materials such as electrical and thermal conductivity, optical properties, etc. In extremely rare occasions, the Fermi surface contains disconnected segments that are known as Fermi arcs and often are associated with exotic states like superconductivity.

Adam Kaminski, leader of the research team, explained that newly discovered Fermi arcs are the result of electron band splitting, which results from the magnetic order of Nd atoms that make up 50% of the sample. However, the electron splitting that the team observed in NdBi was not typical band splitting behavior.

New Fermi arcs could provide a new path for electronics

Mar 25, 2022, 1:14am UTC
https://www.sciencedaily.com/releases/2022/03/220324184641.htm > Fermi surfaces in metals are a boundary between energy states that are occupied and unoccupied by electrons. Fermi surfaces are normally closed contours forming shapes such as spheres, ovoids, etc. Electrons at the Fermi surface control many properties of materials such as electrical and thermal conductivity, optical properties, etc. In extremely rare occasions, the Fermi surface contains disconnected segments that are known as Fermi arcs and often are associated with exotic states like superconductivity. > Adam Kaminski, leader of the research team, explained that newly discovered Fermi arcs are the result of electron band splitting, which results from the magnetic order of Nd atoms that make up 50% of the sample. However, the electron splitting that the team observed in NdBi was not typical band splitting behavior.