Laser flashes for cancer research
https://www.sciencedaily.com/releases/2022/03/220314120654.htm
Radiation therapy is one of the main cancer treatment methods. It usually leverages strong, focused X-ray light. Protons -- the nuclei of hydrogen atoms -- accelerated to high energies and bundled into small, precisely targetable bunches are an alternative. They can penetrate deep into the tissue where they deposit most of their energy in the tumor, destroying the cancer while leaving the surrounding tissue largely intact. This makes the method both more effective and less invasive than X-ray therapy. "The method is particularly suitable for irradiating tumors at the base of the skull, in the brain, and in the central nervous system," explains HZDR researcher Dr. Elke Beyreuther. "It is also used in pediatric cancer patients to reduce possible long-term effects."
However, the method is significantly more complex than X-ray therapy as it requires elaborate accelerator facilities to generate the fast protons and transport them to the patient. This is why there are only a few proton therapy centers in Germany, including one at Dresden University Hospital. Currently, experts are working to steadily improve the method and adapt it to patients. Laser-based proton accelerators could make a decisive contribution here.