Explainable AI for decoding genome biology
https://www.sciencedaily.com/releases/2021/02/210218151102.htm
Neural networks are powerful AI models that can learn complex patterns from diverse types of data such as images, speech signals, or text to predict associated properties with impressive high accuracy. However, many see these models as uninterpretable since the learned predictive patterns are hard to extract from the model. This black-box nature has hindered the wide application of neural networks to biology, where interpretation of predictive patterns is paramount.
One of the big unsolved problems in biology is the genome's second code -- its regulatory code. DNA bases (commonly represented by letters A, C, G, and T) encode not only the instructions for how to build proteins, but also when and where to make these proteins in an organism. The regulatory code is read by proteins called transcription factors that bind to short stretches of DNA called motifs. However, how particular combinations and arrangements of motifs specify regulatory activity is an extremely complex problem that has been hard to pin down.