Highly sensitive test for SARS-CoV-2 may enable rapid point-of-care testing for COVID

Highly sensitive test for SARS-CoV-2 may enable rapid point-of-care testing for COVID

3 years ago
Anonymous $LNMzUc6XNz

https://www.sciencedaily.com/releases/2021/06/210617103612.htm

The global coronavirus pandemic has revealed the crucial need for rapid pathogen screening. However, the current gold-standard for detecting RNA viruses -- including SARS-CoV-2, the virus that causes COVID -- is reverse transcription-polymerase chain reaction (RT-PCR) testing. While accurate, this method is relatively slow, which hinders the timely interventions required to control an outbreak.

Now, scientists led by Osaka University have developed an intelligent nanopore system that can be used for the detection of SARS-CoV-2 virus particles. Using machine-learning methods, the platform can accurately discriminate between similarly sized coronaviruses responsible for different respiratory diseases. "Our innovative technology has high sensitivity and can even electrically identify single virus particles," first author Professor Masateru Taniguchi says. Using this platform, the researchers were able to achieve a sensitivity of 90% and a specificity of 96% for SARS-CoV-2 detection in just five minutes using clinical saliva samples.

Highly sensitive test for SARS-CoV-2 may enable rapid point-of-care testing for COVID

Jun 18, 2021, 5:24pm UTC
https://www.sciencedaily.com/releases/2021/06/210617103612.htm > The global coronavirus pandemic has revealed the crucial need for rapid pathogen screening. However, the current gold-standard for detecting RNA viruses -- including SARS-CoV-2, the virus that causes COVID -- is reverse transcription-polymerase chain reaction (RT-PCR) testing. While accurate, this method is relatively slow, which hinders the timely interventions required to control an outbreak. > Now, scientists led by Osaka University have developed an intelligent nanopore system that can be used for the detection of SARS-CoV-2 virus particles. Using machine-learning methods, the platform can accurately discriminate between similarly sized coronaviruses responsible for different respiratory diseases. "Our innovative technology has high sensitivity and can even electrically identify single virus particles," first author Professor Masateru Taniguchi says. Using this platform, the researchers were able to achieve a sensitivity of 90% and a specificity of 96% for SARS-CoV-2 detection in just five minutes using clinical saliva samples.