New machine learning tool tracks urban traffic congestion

New machine learning tool tracks urban traffic congestion

4 years ago
Anonymous $y15ULlV7sG

https://www.sciencedaily.com/releases/2020/12/201202192721.htm

The tool, called TranSEC, was developed at the U.S. Department of Energy's Pacific Northwest National Laboratory to help urban traffic engineers get access to actionable information about traffic patterns in their cities.

Currently, publicly available traffic information at the street level is sparse and incomplete. Traffic engineers generally have relied on isolated traffic counts, collision statistics and speed data to determine roadway conditions. The new tool uses traffic datasets collected from UBER drivers and other publicly available traffic sensor data to map street-level traffic flow over time. It creates a big picture of city traffic using machine learning tools and the computing resources available at a national laboratory.

New machine learning tool tracks urban traffic congestion

Dec 3, 2020, 8:14pm UTC
https://www.sciencedaily.com/releases/2020/12/201202192721.htm > The tool, called TranSEC, was developed at the U.S. Department of Energy's Pacific Northwest National Laboratory to help urban traffic engineers get access to actionable information about traffic patterns in their cities. > Currently, publicly available traffic information at the street level is sparse and incomplete. Traffic engineers generally have relied on isolated traffic counts, collision statistics and speed data to determine roadway conditions. The new tool uses traffic datasets collected from UBER drivers and other publicly available traffic sensor data to map street-level traffic flow over time. It creates a big picture of city traffic using machine learning tools and the computing resources available at a national laboratory.