An ultrasonic projector for medicine

An ultrasonic projector for medicine

4 years ago
Anonymous $RGO3jP_V_c

https://www.sciencedaily.com/releases/2020/10/201019125522.htm

Ultrasound is widely used as a diagnostic tool in both medicine and materials science. It can also be used therapeutically. In the US, for example, tumours of the uterus and prostate are treated with high-power ultrasound. The ultrasound destroys the cancer cells by specific heating of the diseased tissue. Researchers worldwide are using ultrasound to combat tumours and other pathological changes in the brain. "In order to avoid damaging healthy tissue, the sound pressure profile must be precisely shaped," explains Peer Fischer, Research Group Leader at the Max Planck Institute for Intelligent Systems and professor at the University of Stuttgart. Tailoring an intensive ultrasound field to diseased tissue is somewhat more difficult in the brain. This is because the skullcap distorts the sound wave. The Spatial Ultrasound Modulator (SUM) developed by researchers in Fischer's group should help to remedy this situation and make ultrasound treatment more effective and easier in other cases. It allows the three-dimensional shape of even very intense ultrasound waves to be varied with high resolution -- and with less technical effort than is currently required to modulate ultrasound profiles.

High intensity sound pressure profiles with 10,000 pixels

An ultrasonic projector for medicine

Oct 19, 2020, 6:40pm UTC
https://www.sciencedaily.com/releases/2020/10/201019125522.htm > Ultrasound is widely used as a diagnostic tool in both medicine and materials science. It can also be used therapeutically. In the US, for example, tumours of the uterus and prostate are treated with high-power ultrasound. The ultrasound destroys the cancer cells by specific heating of the diseased tissue. Researchers worldwide are using ultrasound to combat tumours and other pathological changes in the brain. "In order to avoid damaging healthy tissue, the sound pressure profile must be precisely shaped," explains Peer Fischer, Research Group Leader at the Max Planck Institute for Intelligent Systems and professor at the University of Stuttgart. Tailoring an intensive ultrasound field to diseased tissue is somewhat more difficult in the brain. This is because the skullcap distorts the sound wave. The Spatial Ultrasound Modulator (SUM) developed by researchers in Fischer's group should help to remedy this situation and make ultrasound treatment more effective and easier in other cases. It allows the three-dimensional shape of even very intense ultrasound waves to be varied with high resolution -- and with less technical effort than is currently required to modulate ultrasound profiles. > High intensity sound pressure profiles with 10,000 pixels