Team develops highly stretchable hydrogels for high resolution multimaterial 3-D printing
https://phys.org/news/2018-06-team-highly-stretchable-hydrogels-high.html
Recently, researchers from the Singapore University of Technology and Design (SUTD) Digital Manufacturing and Design (DManD) Centre and the Hebrew University of Jerusalem (HUJI) have developed a family of highly stretchable and UV curable hydrogels that can be stretched by up to 1300%, and are suitable for UV curing based 3-D printing techniques. These have been adopted to fabricate hydrogel structures that require high printing resolution and high geometric complexity. Details of this work appeared in the April 2018 issue of Journal of Materials Chemistry B and it was also featured on the front cover.
"We have developed the most stretchable 3-D printed hydrogel sample in the world," said Assistant Professor Qi (Kevin) Ge from SUTD's Science and Math Cluster, who is one of the co-leaders of this project. He added: " The printed hydrogel sample can be stretched by up to 1300%. At the same time, the compatibility of these hydrogels with digital light processing-based 3-D printing technology allows us to fabricate hydrogel 3-D structures with resolutions up to 7 μm and complex geometries."