All-electric rideshare fleet could reduce carbon emissions, increase traffic issues

All-electric rideshare fleet could reduce carbon emissions, increase traffic issues

a year ago
Anonymous $KxGqLmj_R3

https://www.sciencedaily.com/releases/2023/06/230612114707.htm

Ridesharing apps are an increasingly popular way to travel around urban areas, especially for people without their own vehicles. But the cars and SUVs used in these situations drive more miles each year than a typical personal vehicle, contributing a higher proportion of greenhouse gases to the environment. Previously, researchers calculated that rideshare companies' carbon footprints could significantly decrease by fully electrifying their fleets. However, few studies have used real-world rideshare trip data in their estimates, or included additional assessments of air pollution and traffic impacts, from the switch. So, Aniruddh Mohan and colleagues wanted to develop a method that evaluated the life-cycle costs and benefits for two battery-powered ridesource fleets and a gasoline-powered one.

The researchers collected real-world rideshare trip data for Chicago and used it to simulate rides provided by three fleets: gasoline-powered, and electric-powered with either 40 kWh or 60 kWh battery packs. Then, they did a comprehensive estimate of the use-phase and life-cycle impacts of the trips made in the simulations. Combining these data, they assigned a monetary value to each trip, based on the assumed damage done by carbon emissions, negative health impacts and traffic-related issues.

All-electric rideshare fleet could reduce carbon emissions, increase traffic issues

Jun 13, 2023, 1:32pm UTC
https://www.sciencedaily.com/releases/2023/06/230612114707.htm > Ridesharing apps are an increasingly popular way to travel around urban areas, especially for people without their own vehicles. But the cars and SUVs used in these situations drive more miles each year than a typical personal vehicle, contributing a higher proportion of greenhouse gases to the environment. Previously, researchers calculated that rideshare companies' carbon footprints could significantly decrease by fully electrifying their fleets. However, few studies have used real-world rideshare trip data in their estimates, or included additional assessments of air pollution and traffic impacts, from the switch. So, Aniruddh Mohan and colleagues wanted to develop a method that evaluated the life-cycle costs and benefits for two battery-powered ridesource fleets and a gasoline-powered one. > The researchers collected real-world rideshare trip data for Chicago and used it to simulate rides provided by three fleets: gasoline-powered, and electric-powered with either 40 kWh or 60 kWh battery packs. Then, they did a comprehensive estimate of the use-phase and life-cycle impacts of the trips made in the simulations. Combining these data, they assigned a monetary value to each trip, based on the assumed damage done by carbon emissions, negative health impacts and traffic-related issues.