The coincidence between two overachieving NASA missions

The coincidence between two overachieving NASA missions

6 years ago
Anonymous $yysEBM5EYi

https://phys.org/news/2018-10-coincidence-overachieving-nasa-missions.html

Launched in 2007, Dawn was the first spacecraft to orbit a body between Mars and Jupiter, and the first to orbit more than one deep-space destination. From 2011 to 2012, Dawn studied the asteroid Vesta before pulling off an unprecedented maneuver by leaving orbit and traveling to the dwarf planet Ceres, which it observed for over 3.5 years. Dawn will remain in a stable orbit around Ceres for decades. Among its many findings, Dawn helped scientists discover organics on Ceres and evidence that dwarf planets could have hosted oceans over a significant part of their history—and possibly still do.

Kepler, meanwhile, launched in 2009 and revealed that there is statistically at least one planet around every star in our galaxy. It also opened our eyes to the variety of worlds beyond our solar system, with its discovery of more than 2,600 planets orbiting other stars. Among these worlds are rocky, Earth-sized planets, some of which orbit within their stars' habitable zones, where liquid water could pool on the surface. Kepler also characterized a class of planets that don't exist in our solar system: worlds between the sizes of Earth and Neptune, or "super-Earths."

The coincidence between two overachieving NASA missions

Oct 30, 2018, 2:52pm UTC
https://phys.org/news/2018-10-coincidence-overachieving-nasa-missions.html > Launched in 2007, Dawn was the first spacecraft to orbit a body between Mars and Jupiter, and the first to orbit more than one deep-space destination. From 2011 to 2012, Dawn studied the asteroid Vesta before pulling off an unprecedented maneuver by leaving orbit and traveling to the dwarf planet Ceres, which it observed for over 3.5 years. Dawn will remain in a stable orbit around Ceres for decades. Among its many findings, Dawn helped scientists discover organics on Ceres and evidence that dwarf planets could have hosted oceans over a significant part of their history—and possibly still do. > Kepler, meanwhile, launched in 2009 and revealed that there is statistically at least one planet around every star in our galaxy. It also opened our eyes to the variety of worlds beyond our solar system, with its discovery of more than 2,600 planets orbiting other stars. Among these worlds are rocky, Earth-sized planets, some of which orbit within their stars' habitable zones, where liquid water could pool on the surface. Kepler also characterized a class of planets that don't exist in our solar system: worlds between the sizes of Earth and Neptune, or "super-Earths."