Scientists simulate the intracellular environment of a luminescent bacteria cell

6 years ago
Anonymous $ZPWJA6-QD2

https://phys.org/news/2018-10-scientists-simulate-intracellular-environment-luminescent.html

In order to understand how the viscosity of the reaction mixture affects the rate of enzymatic processes, a team from the Institute of Fundamental Biology and Biotechnology of SFU simulated the intracellular environment using two organic solvents—glycerol and sucrose. To test the effect of viscosity of the reaction mixture, the scientists used a fragment of a bioluminescent metabolic chain.

The work consisted of three stages. On the first stage, the biophysicists developed several artificial model systems made of glycerol and sucrose with different concentrations of components, but the same viscosity levels of reaction medium. On the second stage, they determined how the viscosity of the reaction mixture affected the speed of a enzymatic reaction in the coupled system of three enzymes: LDH, NAD(P)H:FMN-oxidoreductase, and luciferase. On the third stage, the researchers evaluated the thermal stability of the triple-enzyme system at the range of temperatures from 15 to 80 degrees.

Scientists simulate the intracellular environment of a luminescent bacteria cell

Oct 29, 2018, 1:27pm UTC
https://phys.org/news/2018-10-scientists-simulate-intracellular-environment-luminescent.html > In order to understand how the viscosity of the reaction mixture affects the rate of enzymatic processes, a team from the Institute of Fundamental Biology and Biotechnology of SFU simulated the intracellular environment using two organic solvents—glycerol and sucrose. To test the effect of viscosity of the reaction mixture, the scientists used a fragment of a bioluminescent metabolic chain. > The work consisted of three stages. On the first stage, the biophysicists developed several artificial model systems made of glycerol and sucrose with different concentrations of components, but the same viscosity levels of reaction medium. On the second stage, they determined how the viscosity of the reaction mixture affected the speed of a enzymatic reaction in the coupled system of three enzymes: LDH, NAD(P)H:FMN-oxidoreductase, and luciferase. On the third stage, the researchers evaluated the thermal stability of the triple-enzyme system at the range of temperatures from 15 to 80 degrees.