Opinion: We need to talk about the Higgs

Opinion: We need to talk about the Higgs

6 years ago
Anonymous $cyhBy-qkd5

https://phys.org/news/2018-07-opinion-higgs.html

Let's look at things more positively. The Higgs boson is a totally new type of fundamental particle that allows unprecedented tests of electroweak symmetry breaking. It thus provides us with a novel microscope with which to probe the universe at the smallest scales, in analogy with the prospects for new gravitational-wave telescopes that will study the largest scales. There is a clear need to measure its couplings to other particles – especially its coupling with itself – and to explore potential connections between the Higgs and hidden or dark sectors. These arguments alone provide ample motivation for the next generation of colliders including and beyond the high-luminosity LHC upgrade.

So far the Higgs boson indeed looks SM-like, but some perspective is necessary. It took more than 40 years from the discovery of the neutrino to the realisation that it is not massless and therefore not SM-like; addressing this mystery is now a key component of the global particle-physics programme. Turning to my own main research area, the beauty quark – which reached its 40th birthday last year – is another example of a long-established particle that is now providing exciting hints of new phenomena (see Beauty quarks test lepton universality). One thrilling scenario, if these deviations from the SM are confirmed, is that the new physics landscape can be explored through both the b and Higgs microscopes. Let's call it "multi-messenger particle physics."

Opinion: We need to talk about the Higgs

Jul 6, 2018, 12:22pm UTC
https://phys.org/news/2018-07-opinion-higgs.html > Let's look at things more positively. The Higgs boson is a totally new type of fundamental particle that allows unprecedented tests of electroweak symmetry breaking. It thus provides us with a novel microscope with which to probe the universe at the smallest scales, in analogy with the prospects for new gravitational-wave telescopes that will study the largest scales. There is a clear need to measure its couplings to other particles – especially its coupling with itself – and to explore potential connections between the Higgs and hidden or dark sectors. These arguments alone provide ample motivation for the next generation of colliders including and beyond the high-luminosity LHC upgrade. > So far the Higgs boson indeed looks SM-like, but some perspective is necessary. It took more than 40 years from the discovery of the neutrino to the realisation that it is not massless and therefore not SM-like; addressing this mystery is now a key component of the global particle-physics programme. Turning to my own main research area, the beauty quark – which reached its 40th birthday last year – is another example of a long-established particle that is now providing exciting hints of new phenomena (see Beauty quarks test lepton universality). One thrilling scenario, if these deviations from the SM are confirmed, is that the new physics landscape can be explored through both the b and Higgs microscopes. Let's call it "multi-messenger particle physics."