Network theory links behavioral information flow with contained epidemic outbreaks

Network theory links behavioral information flow with contained epidemic outbreaks

6 years ago
Anonymous $roN-uuAfLt

https://phys.org/news/2018-06-network-theory-links-behavioral-epidemic.html

Members of an affected population typically base their behavioral responses on information gleaned from mass and social media, physical encounters in their social and spatial neighborhoods, and general observations. "Traditionally, infectious disease models have treated human behaviors as constant, implying that they do not fluctuate according to disease incidence or a characteristic timescale," Sun and Fu said. "However, the development of modern technology offers a great convenience for the communication of human behaviors, including face-to-face conversations, email exchanges, phone calls, and other types of interactions in a variety of network forums." Humans adopt preventative measures based on these direct or indirect relations, both to protect themselves from infection and reduce the risk of further disease transmission. Such measures include limitation or elimination of time spent outside the home, increased attention to hand-washing and personal hygiene, and limited contact with neighbors and other citizens.

Prior studies involving complex interplay models have classified awareness into three categories: local awareness, global awareness, and contact awareness. However, Sun et al. classify it into two alternative categories: (i) adaptive behaviors stemming from awareness and (ii) behavioral information transmission (the spread of awareness itself). "Our work is within the framework of network-based models, and we use a more accurate network configuration—quenched multiplex networks—to model the transmission of an infection," Sun and Fu said. "This configuration involves the interplay of epidemic spread, information transmission, and behavioral dynamics." The authors configure these multiplex networks into two layers. One layer accounts for recurring physical contacts, such as coworkers, family members, friends, classmates, and neighbors; interaction with these groups can spread infection. The second pertains to virtual contacts—acquaintances on Facebook, Twitter, or other online social networking platforms; communication with this group is not physical and thus cannot actively spread infection.

Network theory links behavioral information flow with contained epidemic outbreaks

Jun 14, 2018, 2:57pm UTC
https://phys.org/news/2018-06-network-theory-links-behavioral-epidemic.html > Members of an affected population typically base their behavioral responses on information gleaned from mass and social media, physical encounters in their social and spatial neighborhoods, and general observations. "Traditionally, infectious disease models have treated human behaviors as constant, implying that they do not fluctuate according to disease incidence or a characteristic timescale," Sun and Fu said. "However, the development of modern technology offers a great convenience for the communication of human behaviors, including face-to-face conversations, email exchanges, phone calls, and other types of interactions in a variety of network forums." Humans adopt preventative measures based on these direct or indirect relations, both to protect themselves from infection and reduce the risk of further disease transmission. Such measures include limitation or elimination of time spent outside the home, increased attention to hand-washing and personal hygiene, and limited contact with neighbors and other citizens. > Prior studies involving complex interplay models have classified awareness into three categories: local awareness, global awareness, and contact awareness. However, Sun et al. classify it into two alternative categories: (i) adaptive behaviors stemming from awareness and (ii) behavioral information transmission (the spread of awareness itself). "Our work is within the framework of network-based models, and we use a more accurate network configuration—quenched multiplex networks—to model the transmission of an infection," Sun and Fu said. "This configuration involves the interplay of epidemic spread, information transmission, and behavioral dynamics." The authors configure these multiplex networks into two layers. One layer accounts for recurring physical contacts, such as coworkers, family members, friends, classmates, and neighbors; interaction with these groups can spread infection. The second pertains to virtual contacts—acquaintances on Facebook, Twitter, or other online social networking platforms; communication with this group is not physical and thus cannot actively spread infection.