43
How Voxels Became ‘The Next Big Thing’

How Voxels Became ‘The Next Big Thing’

6 years ago
Anonymous $CLwNLde341

https://medium.com/@EightyLevel/how-voxels-became-the-next-big-thing-4eb9665cd13a

Branislav: I used to compete in the demoscene in Europe between 2000 and 2002. I wrote a few 256-bytes demos (also called intros) under the nickname Silique/Bizzare Devs (see “Njufnjuf”, “Oxlpka”, “I like ya, Tweety” and “Comatose”), where each of the intros generated real-time voxel or point cloud graphics. Both voxels and point clouds are examples of sampled geometry.

The intros did their job with about 100 CPU instructions like ADD, MUL, STOSB, PUSH and similar. However, due to the nature of these type of programs, tens of instructions were actually used just for setting up things, not for generating the actual graphics. Still, those 50+ instructions, which are basically elementary mathematical and memory operations, were enough to generate pretty neat moving 3D graphics at real-time speeds. All these 256B intros won the 1st to 3rd prize and that made me realize that when such 3D graphics are so easy to create without polygons, it could also be possible to achieve much more in games and beyond, by doing the same there: using sampled geometry instead of polygon meshes. Simplicity is the key. I saw that the then-dominant paradigm based on complicated and fundamentally limited (non-volumetric) representation was going to hit a complexity ceiling, so the timing was right to try this “new“ and simpler paradigm: volumetric sampled geometry.

How Voxels Became ‘The Next Big Thing’

May 28, 2018, 9:21pm UTC
https://medium.com/@EightyLevel/how-voxels-became-the-next-big-thing-4eb9665cd13a > Branislav: I used to compete in the demoscene in Europe between 2000 and 2002. I wrote a few 256-bytes demos (also called intros) under the nickname Silique/Bizzare Devs (see “Njufnjuf”, “Oxlpka”, “I like ya, Tweety” and “Comatose”), where each of the intros generated real-time voxel or point cloud graphics. Both voxels and point clouds are examples of sampled geometry. > The intros did their job with about 100 CPU instructions like ADD, MUL, STOSB, PUSH and similar. However, due to the nature of these type of programs, tens of instructions were actually used just for setting up things, not for generating the actual graphics. Still, those 50+ instructions, which are basically elementary mathematical and memory operations, were enough to generate pretty neat moving 3D graphics at real-time speeds. All these 256B intros won the 1st to 3rd prize and that made me realize that when such 3D graphics are so easy to create without polygons, it could also be possible to achieve much more in games and beyond, by doing the same there: using sampled geometry instead of polygon meshes. Simplicity is the key. I saw that the then-dominant paradigm based on complicated and fundamentally limited (non-volumetric) representation was going to hit a complexity ceiling, so the timing was right to try this “new“ and simpler paradigm: volumetric sampled geometry.