Flexible and dynamic transport solution for future 5G communications developed
https://phys.org/news/2018-05-flexible-dynamic-solution-future-5g.html
The transport network now presented flexibly interconnects distributed 5G radio access and core network functions hosted on in-network cloud nodes. This configuration is achieved through the implementation of a control infrastructure coupled with a unified data plane, encompassing innovative high-capacity transmission technologies as well as novel deterministic-latency switch architectures. "The data plane is like a muscle, while the control infrastructure would be like a brain. Thanks to their integration we can move a huge amount of data in a very short time, and we can do it by controlling how long it takes to perform this process," explains one of the researchers.
"It has been truly an honor to oversee one of the most ambitious 5G transport network research and development efforts to date," said the Coordinator of the 5G-Crosshaul project, Arturo Azcorra, Professor at the Telematics Department of UC3M and Director of IMDEA Networks. "The successful results of the 5G-Crosshaul project have advanced scientific knowledge and the international standardization of 5G systems. They have ultimately contributed to an increase in Europe's global competitiveness in 5G."