Machine learning that works like a dream

4 years ago
Anonymous $4bURcB5AtU

https://www.sciencedaily.com/releases/2019/12/191203094818.htm

Scientists who study sleep often use mice as animal models to better understand the ways the activity in the brain changes during the various phases. These phases can be classified as awake, REM (rapid eye movement) sleep, and non-REM sleep. Previously, researchers who monitored the brainwaves of sleeping mice ended up with mountains of data that needed to be laboriously labeled by hand, often by teams of students. This represented a major bottleneck in the research.

Now, researchers at the University of Tsukuba have introduced a program for automatically classifying the stage of sleep that a mouse experienced based on its electroencephalogram (EEG) and electromyogram (EMG) signals, which record electrical activity in the brain and body, respectively. They combined two machine learning techniques, convolutional neural networks (CNN) and long short-term memory (LSTM) recurrent neural networks, to achieve accuracies that surpass those of the best existing automatic methods.